A lifting theorem and uniform algebras

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On lifting of biadjoints and lax algebras

Given a pseudomonad $mathcal{T} $ on a $2$-category $mathfrak{B} $, if a right biadjoint $mathfrak{A}tomathfrak{B} $ has a lifting to the pseudoalgebras $mathfrak{A}tomathsf{Ps}textrm{-}mathcal{T}textrm{-}mathsf{Alg} $ then this lifting is also right biadjoint provided that $mathfrak{A} $ has codescent objects. In this paper, we give  general results on lifting of biadjoints. As a consequence, ...

متن کامل

A ZPP Lifting Theorem

The complexity class ZPP (corresponding to zero-error randomized algorithms with access to one NP oracle query) is known to have a number of curious properties. We further explore this class in the settings of time complexity, query complexity, and communication complexity. r For starters, we provide a new characterization: ZPP equals the restriction of BPP where the algorithm is only allowed t...

متن کامل

A Lifting Theorem for Symmetric Commutants

Let T1, . . . , Tn ∈ B(H) be bounded operators on a Hilbert space H such that T1T ∗ 1 + · · · + TnT ∗ n ≤ IH. Given a symmetry j on H, i.e., j2 = j∗j = IH, we define the j-symmetric commutant of {T1, . . . , Tn} to be the operator space {A ∈ B(H) : TiA = jATi, i = 1, . . . , n}. In this paper we obtain lifting theorems for symmetric commutants. The result extends the Sz.-Nagy–Foiaş commutant li...

متن کامل

Notes on the Lifting Theorem

We have seen that the proof of existence of inverses for elements of Ext(X) can be based on a lifting theorem for (completely) positive maps of C(X) into a quotient C∗-algebra of the form E/K, where E ⊆ B(H) is a C∗-algebra containing the compact operators K. That argument works equally well for arbitrary C∗-algebras in place of C(X) whenever a completely positive lifting exists. Thus we are le...

متن کامل

M-IDEAL STRUCTURE IN UNIFORM ALGEBRAS

It is proved that if A is aregular uniform algebra on a compact Hausdorff space X in which every closed ideal is an M-ideal, then A = C(X).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1988

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-1988-0920147-x